If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-22x-81=0
a = 1; b = -22; c = -81;
Δ = b2-4ac
Δ = -222-4·1·(-81)
Δ = 808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{808}=\sqrt{4*202}=\sqrt{4}*\sqrt{202}=2\sqrt{202}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{202}}{2*1}=\frac{22-2\sqrt{202}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{202}}{2*1}=\frac{22+2\sqrt{202}}{2} $
| -3x59/3=6 | | 117+7t=180 | | 3(7a-5)=4(a-8) | | 3^(2x)=13 | | 7t=27 | | 7t+27=180 | | 7t+77=180 | | 2/3w+7=19 | | 130-6=2x+(4*15) | | 2/x+2+5/3x=4/x | | a=2a-17 | | (4-m)(8+2/3m)(-2-3m)=0 | | .25n+10n=2/3n | | 5a-9=46 | | 8a-81=a+24 | | 5x-4=2x+21 | | 4(2w-12)=2w+12 | | 3w-3=6w-18 | | 26x+1+105=360 | | 7c-12+3c=78 | | H(x)=(5x)/(x^2-3x-18) | | 26x+1+105=180 | | -3.1x+7-7.4x=1.5-6(x-3/2) | | t+58=2t-22 | | m/4+13=1 | | (10x+60)=(30x-20) | | (10x+60)°=(30x-20)° | | 9(x-2)=-3 | | 5x=2x+125x | | -2u-6=4(u+6) | | (10x+60°)=(30x-20)° | | -10+3x+6x=10- |